Latest Event Updates

Gifts from Neptune

Posted on Updated on

For several years we have taken the students on the Mallorca field-course to the strand-line along the Bay of Pollensa and the dune system near C’an Picafort. Both of these stretches of beach tend to collect odd, fuzzy balls of Neptune’s grass (Posidonia oceanica). Wave action breaks down the dead leaves and rhizomes of Neptune’s grass creating fibres which then become matted into dense spheres. I’ve written a previous blog post about Neptune’s grass on these shores of Mallorca.

Instead, this year we visited a different part of the coast where the material accumulates in sculpted waves along the beach edge. Previously I’ve seen this from the window of the coast, so it was interesting to experience it first hand. It is very soft, prone to collapsing and makes the shore edge difficult to walk on. There must be something different about the coastline here which makes the formation of the fibre balls less likely. Whether in balls or loose, the dried Neptune’s grass adds organic matter to the sand and helps to stabilise the dunes further up the beach.

This bit of beach was at the Finca de Son Real, an example of a traditional land-holding now managed by the Balearic Government as a nature reserve and archaeological site. There is a museum here which gives an insight into the lives of the rural people of Mallorca. Through displays of objects, room reconstructions, audio and projections, the museum explores the site from and  from neolithic times into the 20th century including an explanation of how local farmers would have collected dry Neptune’s grass to use as animal bedding.

The Poison Chronicles: Foxglove – The Killer Cure

Posted on Updated on

WP_20170306_15_17_42_Pro

Guest Post by Laura Cooper

Foxglove (Digitalis spp) is one of the rare wild plants for which humans found a wide range of uses. It’s most well known as an ornamental plant, but its use in making the heart drugs with a deadly potential (digoxin and digitoxin) comes a close second. For Digitalis, the same cardiac glycosides which strengthen the heart beat and saves a life are the chemicals which can cause death, the epitome of the maxim “the dose makes the poison”.

The Herbarium has a number of specimens of the two Digitalis species most common in the UK, D. purpurea and D. lanata. The photos in the post are all of the Digitalis purpurea from the collection of Charles Bailey. Despite these specimens being over a hundred years old, the flowers still had their scent, though made musty over the years. Though they have both a poisonous and a healing potential, they are very appealing plants.

WP_20170306_15_19_01_Pro
Manchester Museum Herbarium specimen of Digitalis purpurea

Digitalis has been used in folk medicine for many centuries for many conditions, but most consistently for dropsy (fluid retention in the tissues). In the 18th century, the medical effects of Digitalis were put under the scientific scrutiny of the pioneering William Withering (1741-1799). Withering was a doctor practicing around Birmingham drawn into botany by the influence of his wife, a botanical artist. He joined the great tradition of botanist-physicians, and was even known as “the English Linnaeus” by publishing works including A Botanical Arrangement of All the Vegetables Naturally Growing in Great Britain in 1776, the first complete Linnaean classification of the flora of Great Britain.

(c) University of Birmingham; Supplied by The Public Catalogue Foundation
Portrait of William Withering with Digitalis Source

Digitalis came to Withering’s attention in 1775 when he was asked to deduce the recipe of on a family treatment of last resort for dropsy, which was kept secret by “an old woman in Shropshire”. Withering discerned that the active ingredient was Digitalis purpurea. Intrigued, Withering trialed giving extract of Digitalis to patients attending his free clinic, but with little success. However, the news that a colleague had treated dropsy with the root of Digitalis spurred him on to continue experimenting with the plant. He obtained the dried leaves and gave this powder to his patients in an early precursor of the modern clinical trial. He meticulously recorded the progression of 163 patients taking the drug and found that the dried leaves were effective at relieving the symptoms of dropsy, adjusting the dose as the trial went on. The results were published in 1785 (including failures) in An Account of the Foxglove. The book was remarkable for showing Withering’s willingness to investigate folk remedies rather than dismiss them, to publish negative results and detail side effects. Withering presumed that Digitalis acted as a diuretic to rid the tissues of fluid, but this was only a consequence of Digitalis correcting the underlying heart condition that caused the edema. 

portrait_of_dr-_gachet
Van Gogh’s Portrait of Dr Gachet. Dr Gachet was Van Gogh’s physician, and is pictured here with Digitalis. There is a theory that Van Gogh was suffering chronic Digitalis poisoning at the time of his death, but this hasn’t been sufficiently proved. Source.

Today, the semi-synthetic heart drugs digoxin and digitoxin are derived from Digitalis lanata (rather than  Digitalis purpurea used by Withering). Digoxin is the more widely prescribed of the drugs, being used to treat atrial fibrillation and occasionally heart failure. The safe dose of digoxin is around 8 to 12 micrograms per kg of body weight. Doses much higher than this causes poisoning involving vomiting, delirium, yellow vision and a disturbed heart rhythm, which can kill. However, as digoxin is administered under a doctor’s supervision, accidental overdose of the drug is rare. But chillingly, the availability of the drug and the subtleness of the symptoms makes it a choice drug for an unforgivable but rare crime, the murder of patients by healthcare workers. The person believed to be the most prolific serial killer in American history is the nurse Charles Cullen, who is suspected to have killed several hundred patients using very high doses of digoxin and insulin. This case shows that supplies of all drugs should be carefully monitored to avoid their abuse.

WP_20170306_15_14_26_Pro

Poisoning by Digitalis itself do occur, mostly accidentally by uncareful foragers mistaking it for borage or comfrey, but I have found a report of a woman attempting to poison her husband by adding Digitalis purpurea leaves to a salad. Luckily for these people, the strangely bitter leaves cause vomiting, riding some of the material from the body and sending the person to see a doctor. Poisoning by digoxin in any form can be treated by digoxin-specific antibody, a protein which can bind to digoxin and block its effects, but only if it is caught early enough to be effective.

Digitalis is undoubtedly an infamous poisonous plant, but one that has saved many more lives than it has taken, deliberately or accidentally.

 

The Poison Chronicles: Bryony – Deadly Margins

Posted on

Guest Post by Laura Cooper

WP_20170307_08_08_25_Pro
Margin Illustrations from The Hours of Jeanne de Navarre. Image Source.

 

The Hours of Jeanne de Navarre is one of the most famous and beautiful illuminated manuscripts. It is a collection of prayers and psalms for each of the hours of the medieval religious day made for the personal use of the Queen of Navarre somewhere between 1328-1343. The book is lavishly and elegantly decorated with images of saints and angels framed by a naturalistic border. This curling foliage has been referred to as ivy, but was identified by Christopher de Hamel actually white bryony, Bryonia dioica.

Bryony is a notoriously poisonous plant, so the scenes the illuminator painted are far from idyllic. As de Hamel writes in his book Meetings with Remarkable Manuscripts,“The world in the medieval margins is not a comfortable place, any more than the gilded life of Jeanne de Navarre was safe and secure.” Bryony is not just a decorative flourish, but a memento mori, a reminder of the danger that surrounded the medieval monarch.

WP_20170306_15_01_31_Pro
Byronia dioica leaves and flowers from the Charles Bailey Collection of the Manchester Museum Herbarium

 

In reality, despite it’s elabourate image, bryony is an unglamourous poisoner. The plant is the only gourd (family Cucurbitaceae) native to Britain, mostly found in Central and South Eastern England. Eating the plant produces powerful laxative effect, a scatological killer not fitting the intrigue of the royal court. There doesn’t seem to be any records of human poisoning by B. dioica, but it’s occurrence in hedgerows means livestock occasionally are poisoned by the root. Historical there would have been many more cases, however. B. dioica was used as a medicine, such as for leprosy, likely as a drug of last resort for an untreatable condition.

WP_20170306_15_02_07_Pro
Bryonia dioica from the Charles Bailey Collection of the Manchester Museum Herbarium

 

The B.dioica plant is remarkable for its large, rapidly-growing and foul-smelling root. Roots the size of one year old child were shown to John Gerard by the surgeon of Queen Elizabeth I, William Goderous.The size and speed at which the roots can grow means that they have been used by “knaves” to counterfeit the more alleged aphrodisiac mandrake (Mandragora officinarum). In his Universal Herbal of 1832, Thomas Green describes this practice; “The method which these knaves practiced was to open the earth round a young, thriving Bryony plant […] to fix a mould, such as is used by those who make plaster figures, close to the root, and then to fill in the earth about the root, leaving it to grow to the shape of the mould.” However, the notably effects of anticholinergic toxins of mandrake, inducing hallucinations and rapid heart rate, and the laxative bryony means these frauds were unlikely to have repeat customers.

WP_20170306_15_02_50_Pro
Bryonia dioica leaves and fruit from the Manchester Museum Herbarium

 

The medieval margin illustrations feature identifiable bird species, but lack botanical detail. Bryonia dioica itself is a rapid climber of hedgerows. It’s five-lobed leaves have a rough feel with curling tendrils, white flowers and red berries which produce a foetid smelling juice when squeezed. The root is usually simple like a turnip and when cut produces a white foul smelling milk from the bitter succulent flesh.

Despite its surface charms, its scent, taste and effects are the exact opposite of belladona, meaning it lacks the glamour of this more famous poisoner.

Captivated by Natural Beauty

Posted on

They may be of flower-visitors rather than the flowers themselves, but these butterfly paintings by Robin Gregson-Brown are definitely worth sharing! I look forward to the next set of works which include the botanical scenery for his moths and butterflies.

 

About 30-40% of the visitors to the Manchester Museum’s Entomology Department are art or design students and professionals, who come over to get inspired by the variety of insect shapes, colours and patterns, and to talk to the museum curatorial staff about what interests them. Museum’s curators are especially pleased when such visits result in […]

via Captivated by natural beauty: Robin Gregson-Brown and Lepidoptera — Entomology Manchester

The Poison Chronicles: Calabar Bean – A Life-Saving Ordeal

Posted on Updated on

calabar-bean-1
Calabar beans and seed cases from the collection of the Manchester Museum Herbarium. 

Guest Post by Laura Cooper

For much of human history, people have sought to find a way to prove or disprove a person’s guilt. Today, we hope evidence and a fair trial will do this, but people have always wanted a quick and definitive way of doing this. This is where the idea of the trial by ordeal came in. Most people are familiar with the practice of dunking suspected witches in bodies of water in parts of 17th century Europe; if they floated they were guilty and if they sunk they were innocent. But in what was then called the Calabar region (now North-East Nigeria) in the 19th century, a particularly poisonous seed was used in these trials by ordeal. This plant, known as the Calabar bean, Physostigma venenosum, became notorious as a poison. However, the principle lethal chemical of the Calabar bean, phystostigmine, was investigated by a number of physicians in Europe as an antidote to poisoning by atropine. Though both compounds can kill, their methods of murder are mirror images of each other, so that one can be used to cancel out the effects of the other; and so a poison can become a cure.

calabar-bean-2
Calabar beans from the Materia Medica collection of the Manchester Museum Herbarium. 

I can only find reports of the use of P. venenosum in ordeals in reports by Europeans visiting Calabar in 1846, who reported that 120 people died annually in the region by the Calabar bean. A person suspected of a misdeed would be made to consume the bean, likely soaked and crushed to release the toxins rather than whole. If they were guilty they would die, if they were innocent they would survive. It has been reported that swallowing the bean probably won’t result in death, but consuming a crushed seed would release toxins, like Abrus precatorius. Consuming enough seeds can lead to increased salivation, seizures, loss of control of urination and defectation and death by asphyxiation. Physostigmine has an oral LD50 (a dose which will kill half of a large group of mice) of 4.5 mg/kg, and the maximum number of beans reported eaten and survived is 35. Depending on a person’s weight and health, it is possible that one person may survive and another die after being given the same number of beans, and this difference can be attributed to their guilt or innocence.

63479_orig
Image Source

The bean extract was known by medics in Europe, and extracts were used to constrict the pupil by ophthalmologists. Aware of it’s effects, in 1864 the Prague ophthalmologist Niemetschek suggested that a patient with atropine poisioning be given Calabar bean. Thomas Fraser investigated the effects of P. venenosum extract rigorously, and identified the chemical phystostigmine as the active chemical.

calabar-bean-3
Calabar beans from the Materia Medica Collection of the Manchester Museum Herbarium.

Phystostigmine acts as an acetylcholinesterase inhibitor. This means it prevents the neurotransmitter acetylcholine from being broken down, so the parasympathetic nervous system is continually stimulated. This is the exact opposite effects of atropine, an anticholinergic drug derived from Atropa belladonna, which I have written about before. Atropine causes anticholinergic syndrome, making the patient “dry as a bone, blind as a bat, red as a beet, mad as a hatter, hot as a hare”, as medical students remember it.

But many other chemicals and conditions can cause anticholinergic syndrome, and despite many published cases of phystostigmine being used to treat anticholinergic syndrome safely and effectively, it has been reported as being underused. It could be speculated that this underuse could be due to the gruesome reputation of the source of the chemical, the Calabar bean, and therefore a hesitancy to recommend the drug. But whilst the drug is dangerous at a high enough dose, the ordeals themselves show that it is survivable (if you are innocent, that is!). We return again to the common theme of plant poisons; everything has a lethal dose, even water, what is more interesting is what doses lower than this can do to the human body.

Stories from the Museum Floor – Valentine’s Day

Posted on Updated on

With Valentine’s Day just around the corner, today’s post by Fang from the Visitor Team, is all about love! And for more about the objects and collections at Manchester Museum, have a look at the Curators’ blogs. All about love … Valentine’s Day is coming soon. In anticipation of a day all about love, I’ve taken a […]

via Valentine’s Day – All about Love … — Stories from the Museum Floor

The Poison Chronicles: Hemlock

Posted on Updated on

wp_20170123_15_44_17_pro
Herbarium Sheet of Conium maculatum from the Manchester Museum Herbarium

Guest Post by Laura Cooper

Poison hemlock (Conium maculatum) is one of the most notorious of poisonous plants. It’s best known as the poison that killed the philosopher Socrates, and may even be indirectly responsible for the deaths of quail eaters, but even this species has been used as a medicine.

wp_20170123_15_44_31_pro
Conium maculatum achenes from the Manchester Museum Herbarium

Conium maculatum is in the family Apiaceae. Many species in this family resemble hemlock as they possess white flowers in umbels, branches of the stem which form a flat surface, and pinnate leaves, resemble parsely (Petroselinum crispum) and wild carrot (Daucus carota). This has lead to foragers accidentally poisoning themselves, but most are put off by the “mousy” or foetid odour and bitter taste. This and red spots that appear on the base of the plant in spring, traditionally gained when the plant grew at the base of Christ’s cross, are key identification features. It is a common “weed” globally, and was introduced as an ornamental to North America.

wp_20160816_11_44_50_pro
A plant easily confused with poison hemlock, Mirrhis odorata or Sweet Cicely. The image on the left is from Leonhart Fuchs’ De Historia Stirpium 1542, illustrations from the Manchester Museum Herbarium.

A vivid account of hemlock poisoning is given in Plato’s Phaedo, where his teacher Socrates is sentenced to death by consuming a “poison” known to be C. maculatum. After being given the poison, Socrates “walked about until […] his legs began to fail, and then he lay on his back […] the man who gave him the poison […] pressed his foot hard, and asked him if he could feel; and he said, No; […] and so upwards and upwards, and showed us that he was cold and stiff. And he […] said: When the poison reaches the heart, that will be the end. […] in a minute or two […] his eyes were set, and Crito closed his eyes and mouth.” The execution is an apt one for a philosopher, as he retained conscience throughout. However, the description may be idealised to preserve the dignity of Plato’s old teacher, as most hemlock poisonings involve vomiting and seizures in addition to the creeping paralysis.

wp_20170123_15_42_53_pro
Specimen from the Manchester Museum Herbarium

Hemlock kills by a cocktail of similar chemicals, including γ-coniceine and coniine. Coniine affecting the nicotinic receptors on neurons first to stimulate the nervous system, causing seizures, vomiting and tachycardia. Later it may inhibit the central nervous system, causing brachycardia and paralysis.

wp_20170123_15_47_39_pro
Specimen from the Manchester Museum Herbarium.

One of the most sinister ways of being poisoned by a plant is the rare condition coturnism. It is caused by eating quail, Coturnix coturnix, killed in the Mediterranean whilst migrating north from Africa in the spring (but not when returning in the autumn). It is widely reported that this is due to the quail consuming the seeds of C. maculatum, but there is conflicting evidence. According to E. F. Jelliffe, hemlock drops seed in late summer and autumn, meaning quail migrating north in the spring cannot have eaten this seed. Therefore, the cause of coturnism is still a mystery.

wp_20170123_15_43_06_pro
Specimen from the Manchester Museum Herbarium

But despite it’s notoriety, C. maculatum features in medieval household remedies. It’s powers of sedation are utilized in a recipe for an anesthetic known as dwale. The recipe involves boiling pig bile, three spoonfuls each of of hemlock juice, opium and henbane, bryony, lettuce and vinegar and adding this to half a gallon of wine. Drinking this would apparently allow a person to fall asleep and be “safely cut”, after which vinegar and salt to the face would revive them. Though the mixture seems effective at knocking a person out, it is questionable that the vinegar would be enough to revive them. However, there is no scientific evidence that “root of hemlock, digged i’ th’ dark” that the witches in Macbeth add to their potion contributed to Macbeth’s false imperviousness.