Manchester Museum

The Travelling Botanist: A Berry Good Day!

Posted on Updated on

dsc_0434-2
Lycium chinense

Guest blog by: Sophie Mogg

Lycium chinese, and its close relative Lycium barbarum, are both native to China although typically found to the Southern and Northern regions respectively. Part of the Solanaceae (Nightshade) family, they are also related to tomatoes, potatoes, eggplants, chili peppers, tobacco and of course belladonna. Both L. chinese and L. barbarum produces the goji berry, or among English folk commonly known as the wolfberry believed to be derived from the resemblance between Lycium and  the greek “lycos” meaning wolf. Both species are decidious woody perennials that typically reach 1-3M tall however L. barbarum is taller than L. chinense.  In May through to August lavendar-pink to light purple flowers are produced with the sepal eventually bursting as a result of the growing berry which matures between August and October. The berry itself is a distinctive orange-red and grape-like in shape.

In Asia, premium quality goji berries known as “red diamonds” are produced in the Ningxia Hui Autonomous Region of North-Central China where for over 700 years goji berries have been cultivated in the floodplains of the yellow river. This area alone accounts for over 45% of the goji berry production in China and is the only area in which practitioners of traditional Chinese medicine will source their goji berries as a result of their superior quality. The goji berry has a long history in Chinese medicine, first being mentioned in the Book of Songs, detailing poetry from the 11th to 7th century BC. Throughout different dynasties master alchemists devised treatments centering around the goji berry in order to improve eyesight, retain youthfulness and treating infertility. However it must be noted that because of the goji berry being high in antioxidants those on blood-thinning medication such as Warfarin are advised not to consume the berries.

lycium
Goji berries and flower

As a result of their long standing history in Chinese medicine and their nutritional quality Goji berries have been nicknamed the “superfruit”. Many studies have linked the berries being high in antioxidants, vitamin A and complex starches to helping reduce fatigue, improve skin condition and night vision as well as age-related diseases such as Alzheimers. However, there has been little evidence to prove these claims and the evidence that is available is of poor quality.

In the 21st century the goji berry is incorporated in to many products such as breakfast biscuits, cereals, yogurt based products as well as many fruit juices. Traditionally the Chinese would consume sun-drief berries with a  wide range of food such as rice congee, tonic soups, chicken and pork. Goji berries would also be boiled alongside Chrysanthemums or tea leaves from Camellia sinensis as a form of herbal tea. How would you like your berries?

I hope you have enjoyed reading about Lycium chinense and Lycium barbarum. Please complete the poll below to tell me more about what you would like to see more of.

For more information follow the links below

Lycium chinense

Lycium barbarum 

Chinese medicine – goji berry

Health benefits and side effects

Advertisements

The Travelling Botanist: There’s always time for EVEN MORE tea!

Posted on Updated on

baby-chrysanthemum-teaGuest blog by: Sophie Mogg

I know you’re thinking “hasn’t she already covered tea?” and yes you’re correct. I have. However, Camellia sinensis (and all of the wonderful varieties of said species) is not the only plant that tea can be made from.  In a more recent blog post you have seen that tea can be made from winter green (Gaultheria procumbens) and the same can be said for a lot of plants. Today I will be venturing into the world of Chrysanthemums – Chrysanthemum indicum and Chrysanthemum morifolium to be exact.

C. indicum is a perennial that grows to roughly 100cm tall and is native to China. Chrysanthemum originates from the greek “chryos” and “anthos” translating to golden flower.  C. indicum lives up to the name and typically produces a  beautiful array of small yellow flowers that flower from August through to October however a multitude of colours are available amongst varieties. One particular variety, C.indicum var. edule (Kitam), is grown and cultivated as a vegetable in China. C. indicum is also one of the main parents of C. morifolium. C. morifolium is less cold hardy than its parental species, often requiring to be stored in greenhouses in Britain when during the cooler weather. However C.morifolium is far larger than its parental species and so is often favoured as a garden ornamental plant. In 1630 over 500 cultivars were listed and in the centuries since numbers have continued to rise generating plants that range from 30 – 120cm tall, with large blooms again in a range of colours.

chrysanthemums
Chrysanthemum indicum

Aside from being beautiful garden plants Chrysanthemums have also been used in Chinese medicine dating back to 475 -221 BCE and the production of tea. The leaves from both species can be used to brew tea, with  cultivars of C. morifolium developed so that leaves are less bitter. The flowers, specifically the petals, of C. morifolium can also be brewed to produce a delicately sweet flavoured tea that is also very beautiful to look at. The tea itself is said to help improve vision by soothing sore eyes and headaches as well as reducing infection and inflammation. Chrysanthemums are said to have antibacterial, antifungal and anti-inflammatory properties and so flowers would often be collected in Autumn and dried so that they could be used later as an infusion. Chrysanthemum tea is also recommended as an alternative to tea from Camellia sinensis for reducing blood pressure.

Flower heads and leaves can also be used in a variety of dishes. Leaves can be battered and turned into fritters and the petals can be pickled or served with soy sauce alongside tofu and salad.  Why not try some Chrysanthemum tea or a sprinkling of petals in your salad next time you’re out in the garden?

As always, let me know in the poll below what you would like to see next and stay tuned for the next Travelling Botanists blog post.

 

If you’d like to find out more about Chrysanthemums check out the links below

Chrysanthemum care

Chrysanthemum indicum

Chrysanthemum morifolium 

Chinese medicine

The Poison Chronicles: Deadly Doping with Strychnos nux-vomica

Posted on Updated on

dsc_0805
Strychnos nux-vomica‘s bumpy nuts

Guest post by Laura Cooper

Strychnine is an infamous poison. It is most well-known by its appearance in the novels of Agatha Christie as an effective but unsubtle method of murder. It was widely available in the 19th century from chemists as a rat poison, but this was taken advantage of by a number of real life serial killers including Dr Thomas Cream who gave disguised as a medicine and in alcohol. But strychnine had another side to it. Its caffeine- like stimulating effects means it has been used as a performance enhancing drug in competitive sports.

wp_20161220_15_08_17_pro
Herbarium sheet of Strychnos nux-vomica

Strychnine, along with the toxin brucine, is present in the seeds of Strychnos nux-vomica. Though its name is lurid, it does not have anything to do with vomiting, “nux vomica” translates as ‘bumpy nut’. S. nux-vomica is in the family Loganiaceae and is native to South-East Asia and India. It is a medium-sized tree with large smooth oval leaves. The flowers have a repellent smell and the fruit is apple-sized with a hard shell that is orange when ripe. Inside, the seed are held in soft gelatinous pulp. The seeds are flattened disks covered with fine hairs, their flatness gives them the nickname ‘Quaker buttons’. The strychnine is concentrated in the seeds, but the wood also possesses poisons including brucine. Strychnine in the S. nux- vomica plays the same role as abrin in Abrus precatorius, it prevents herbivore species evolving which specialize in eating these seeds, as the poison is so general that it will likely kill any animal that eats the seed.

Strychnine poisons by blocking glycine from binding to specific neurons in the central nervous system. Strychnine prevents glycine from carrying out its inhibitory role, so causes the central nervous system to over-react to the smallest stimulus.

Initially the muscles become stiff, which is followed by hyperreflexia, where small stimulus trigger powerful reflex reactions. Later, increasingly frequent whole body convulsions occur. These resemble those in tetanus, an explanation often used to cover up strychnine poisoning. Eventually the respiratory muscles become paralysed and death by asphyxiation  occurs usually within a few hours. Strychnine cannot cross the blood-brain barrier, so the victim is fully conscious throughout, making strychnine poisoning one of the worst ways to die I can imagine.

The main method of treating strychnine poisoning is crude. The patient is given barbiturates and muscle relaxants and removed from stimuli to prevent convulsions until the strychnine is metabolised by the liver which takes a few days.

img_1935
Botanical illustration of Strychnos nux-vomica

However, S. nux-vomica extracts have been used in herbal and alternative medicine. It has been recommended for many different health issues from abdominal pain, heart disease and migraines though there is no evidence for its efficacy as a drug. However, a low dose of strychnine stimulates the central nervous system in a similar way to caffeine, but to a greater extent. This gives it great potential to act as a placebo, which is likely why it was reported to treat a wide range of illnesses, as well as to help spur athletes to victory.

S. nux-vomica‘s stimulating effects were used in 19th and early 20th century Europe and America in competitive sports as one of an arsenal of performance enhancing drugs, which were even deemed necessary for some endurance sports. Strychnine helped the American Thomas Hicks secure an Olympic Gold Medal. He was given strychnine and brandy during the 1904 Olympic marathon when he was flagging, though he collapsed after crossing the finishing line he later recovered. To this day, strychnine is on the list of banned stimulants in the World Anti-Doping Agency International Standard Prohibited List.

For more information, see the Poison Garden’s page on the species and Ian Musgrave’s article on strychnine in sport.

A Travelling Botanist: #WorldSoilDay

Posted on Updated on

Guest blog by: Sophie Mogg

I’m taking a break from my travels to celebrate world soil day. World soil day celebrates the importance of soil in our natural environment and contributes enormously to human well-being through providing a place to grow crops and supporting all walks of life.

In many parts of the world soil is now contaminated with heavy metals and radioactive elements as a by product of mining and various other human activities. This renders the soil unusable and unsuitable for feeding livestock, growing crops and restoring natural habitats. However there are many plants, known as hyperaccumulators, that are able to absorb these heavy metals through their roots, often concentrating them in their leaves. This process is known as phytoremediation. These metals can be retrieved from the plants by burning them, a process known as phytomining. By using natural hyperaccumulators we can reclaim those areas affected by mining and hopefully restore some natural habitats in the process.

Here are some of those wonderful plants from our collection, enjoy!

This slideshow requires JavaScript.

 

A Travelling Botanist: Ricecapades

Posted on Updated on

Guest blog by: Sophie Mogg

I’ll soon be crossing the border into Southeast Asia and exploring the many wonderful plants there but there’s time for one last post!

dsc_0309-2
Oryza sativa

Oryza sativa, which translates to “rice” and “cultivated”, remains a staple for half of the worlds population. It is a widely cultivated plant, growing in over 100 countries and on all continents with exception of Antarctica. There are currently 40,000 varieties of rice of which over 100 of these are grown globally. Oryza rufipogon grows through South and Southeast Asia, it is the wild relative of Oryza sativa. The earliest recorded cultivation of rice has been documented to be in China around 6000 BC.

Within the species sativa, two subspecies have been classified: japonicaindica.
 Japonica varieties are short-grained and sticky, often grown in higher altitudes such as the uplands of Southeast Asia. Indica on the other hand are long-grained and non-sticky varieties grown in the lowlands and often submerged. Javanica, now known as tropical japonica, is a subgroup to japonica and is made up of broad-grained varieties grown in tropical conditions. However classification of rice has changed numerous times due to differing basis of classification such as the types of enzymes present or short sequence repeats in the DNA.

Oryza sativa can grow either 1M tall in dry conditions or 5M long in submerged conditions.  The stem is composed of several nodes and from each node grows a long, slender leaf. The seeds, like other grass species, grow on long spikes which have the tendency to arch over with the weight of the seed. It is the endosperm of these seeds which we consume. Whilst rice can be found in many colours such as white, brown, red, purple and black we commonly eat either the white or brown rice. White rice is typically polished (milled) to remove the bran layer, where as wholegrain “brown” rice has the bran layer intact. The bran layer, present in all cereal crops, is rich in essential amino acids, dietary fibre and antioxidants.

Image result for oryza sativa
Oryza sativa field

96% of the rice that is grown worldwide is consumed by the same countries that grow it however these countries also suffer from Vitamin A deficiency. Scientists have tried to improve the nutritional quality of rice by introducing  enzymes from other plants via genetic modification that are needed to synthesise beta-carotene. Beta-carotene is converted into Vitamin A in the intestines. The Golden Rice Project aims to reduce the incidence of Vitamin A deficiency (VAD) syndrome which is prevalent in these countries.

Generally rice is steamed or boiled however it can also be used to produce several other products. Rice can be pressed in order to produce rice milk, which is an excellent alternative for those avoiding dairy products who may also have a nut allergy however it is rich in carbohydrates and low in protein and so is not necessarily the best option for diabetics or the elderly. In Japan, sake is made from brewing milled rice somewhat similar to beer however the conversion of starch to sugar and then sugar to alcohol occurs simultaneously. Sake is customarily sipped from a small cup known as a sakazuki on special occasions.

Rice is also used in many traditional medicines such as Ayurveda such as in the treatment of diarrhea. Rice would be boiled and then strained, allowing the water to cool. The patient would then drink the rice water which would stop the diarrhoea or ease the stomach upset as well as re-hydrating them. Congee is a traditional dish made using a single grain, often brown rice, and slowly cooking it on low heat with a 1:5 or 1:6 ratio of rice to water. Congee is said to be very beneficial to those with low energy and issues regarding weight loss/gain and is made across India and China. Several studies such those using rice callus and extracts have shown that rice also has anticancer properties by inhibiting growth of human cancer cells.

If you have any suggestions for the types of plants you wish to learn about please fill in the poll below or if you have any specific queries please leave a comment.

 

If you are interested in learning more about rice follow the links below:

Oryza sativa 

Rice association – varieties 

Oldways whole grain council – types of rice (with pictures)

Brown rice in medicine 

Vitamin A Deficiency syndrome (VAD)

A Travelling Botanist: International Year of the Pulses

Posted on

Guest blog by: Sophie Mogg

2016 marks the international year of the pulses, decided back in 2013 at the 68th session of the United Nations General Assembly. The Food and Agriculture Organization nominated pulses in the hope that this would raise awareness of their importance in providing a sustainable source of plant protein.

Throughout the the year there have been many conferences, discussions and workshops held in order to promote a better understanding and public awareness on topics surrounding sustainable food production, food security and nutrition as well as improvements in crop rotation and how we can work towards improving trade connections of pulses and utilization of plant based proteins. Whilst none of these events are taking place in the UK many resources are available online at their website including recipes and videos for you to watch.

As with all my other blog posts I have found some specimens within our collection to show you.

The Chick Pea (Cicer arietinum)

dsc_0328
Cicer arietinum

“This interesting little leguminous plant has been an object of cultivation from time immemorial & grows wild at the present day in the cornfields”

C. arietinum is one of the earliest cultivated legumes dating back around 7,500 years ago in the Middle East. Production is rapidly increasing across Asia as superior cultivars are developed and released. Many country farmers depend upon this legume for a source of income however legumes also enrich the soil through the addition of nitrogen.

This small plant, reaching heights of 20-50 cm, may not look like much but the seeds pack a punch. Approximately 100g of these seeds provides ~20% of protein, dietary fibre and other minerals needed, thereby providing a cheaper alternative to those who cannot afford meat or choose not to eat it. Leaves are also consumed providing essential micro-nutrients which are significantly higher than in cabbage and spinach.

A study has also shown that the chickpea can also be used as an animal feed, with many groups of animals benefiting.

The Pigeon Pea (Cajanus cajan)

dsc_0335
Cajanus cajan

The pigeon pea often grows between 1-4M tall with a tap root reaching around 2M. This legume is also a major source of protein for those living in South Asia and has been consumed across Asia, Africa and Latin America since it was first domesticated in India around 3,500 years ago.

It is a perennial plant that is harvested for between 3-5 years however after the second year the yield drops and so annuals are more often used as a means to harvest the seed. Like the chickpea, the pigeon pea is also able to enrich soils with nitrogen and its leaves are often used to feed cattle whilst the woody stem is used for firewood.

 

 

 

 

Black Lentil (Vigna mungo aka Phaseolus mungo L.)

dsc_0330
Vigna mungo

Vigna mungo can be found in various forms ranging from a fully erect plant to one that trails growing between 30-100cm. It produces large leaves which are hairy and seed pods that are approximately 6cm long.

It is very popular in India where the seed is split and made into dal.  The Black Lentil is very nutritionally rich containing 25g of protein per 100g of seed as well as many other important micro-nutrients and therefore plays a huge role in the diets of those from India.

A Travelling Botanist: The worlds most used fibre!

Posted on Updated on

Guest blog series by: Sophie Mogg

gossyp12a
Gossypium aboreum flower

Cotton, we’ve all seen it, heard of it and probably worn clothes made from it too. In today’s installment we’ll be taking a look at Gossypium arboreum, the species of cotton native to India and Pakistan. This particular species was supplied as a single specimen by Carl Linnaeus for his herbarium and was recorded within his own book,  Species Plantarum 1753.

Cotton has been cultivated in South Asia from around 3300 BCE. It is a perennial shrub, reaching approximately 2M tall and grown more like an annual due to being harvested every year. The leaves of the cotton plant are lobed, typically having 3-5 lobes and bearing a close resemblance to maple leaves.  The seeds are contained within the boll, a small capsule and individual seeds are surrounded by two types of fibres known as staples and linsters. The former is produced into high quality textiles where as the latter produces lower quality textiles. Whilst Gossypium arboreum and its sister plant, Gossypium herbaceum (Africa) only form 2% of the world production of cotton, new varieties of these species are being bread for more desirable traits. One such variety is Gossypium arboreum var. neglecta grown along the Meghna river. This variety, known as “Phuti karpas” is used to make Muslin in Bangladesh as the cotton fibres  can be spun to produce threads are more resistant to breaking at higher counts.

dsc_0270
Specimens of cotton at different stages of processing. Gossypium herbaceum (Africa) bolls.

The fibres can be separated from the seeds either manually or by use of a machine known as the cotton gin. There are two types of cotton gins, the saw gin for the shorter fibres and roller gin for the longer fibres. The roller gin was invented in India and is used to prevent damage to the longer fibres. Once fibres are separated from the seed they are compressed  into lint bales and graded. Carding is the next step, where fibres are pulled so that align parallel to one another and eventually form a sliver which is a rope-like strand of cotton. The slivers are combed to remove impurities before being drawn out into thin strands (roving). The final processing step of cotton is the spinning, where the roving is drawn out and twisted for form yarns and threads for weaving to produce textiles.

Towards the end of the 18th century Manchester had begun to build steam powered mills in order to work with cotton and by 1871 was using approximately 30% of the cotton produced globally. Over 100 cotton mills were built during this time and the industry was supported by The Exchange where over 10,000 cotton merchants would meet in order to sell their wares. The start of the cotton industry across Britain coincided with the Calico act of 1721 being repealed allowing British companies to use cotton in order to make calico, a cheaper and less refined cotton textile, into clothing. Cotton textiles soon became one of the main exports of Britain and is still one of the worlds most used fibres today.

If you are interested in finding out more about plants from Asia over the next few weeks please fill out the poll below.

 

If you would like to learn more about cotton and the cotton industry follow the links below:

Cotton Industry

Cotton Processing

Gossypium arboreum

Uses of Cotton Seed

I’ll soon be travelling to other parts of Asia so I hope you continue to join me. Look for future blogs exploring dyes, medicines and potentially poisons. As always, don’t forget to leave a comment about what you’d like to see from our collection.